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1 Abstract

We hypothesize that evolutionary algorithms can ef-
fectively schedule coordinated fleets of Earth ob-
serving satellites. The constraints are complex and
the bottlenecks are not well understood, a condi-
tion where evolutionary algorithms are often effec-
tive. This is, in part, because evolutionary algorithms
require only that one can represent solutions, modify
solutions, and evaluate solution fitness.

To test the hypothesis we have developed a rep-
resentative set of problems, produced optimization
software (in Java) to solve them, and run experi-
ments comparing techniques. This paper presents
initial results of a comparison of several evolutionary
and other optimization techniques; namely the ge-
netic algorithm [5], simulated annealing [7], squeaky
wheel optimization [6], and stochastic hill climbing
[1]. We also compare separate satellite vs. integrated
scheduling of a two satellite constellation. While the
results are not definitive, tests to date suggest that
simulated annealing is the best search technique and
integrated scheduling is superior.

2 Introduction

A growing fleet of NASA, commercial, and foreign
Earth observing satellites (EOS) uses a variety of
sensing technologies for scientific, mapping, defense
and commercial activities. As the number of satel-
lites (now around 60) increases, the system as a whole
will begin to approximate a sensor web. Image col-
lection for these satellites is planned and scheduled

by a variety of techniques [11], [14], [15] and oth-
ers, but nearly always as separate satellites; not as
an integrated sensor web. Since activities on differ-
ent satellites, or even different instruments on the
same satellite, are typically scheduled independently
of one another, manual coordination of observations
by communicating teams of mission planners is re-
quired. As sensor webs with large numbers of satel-
lites and observation requests develop, manual coor-
dination will no longer be possible. Schedulers that
treat the entire web as a collection of resources will
become necessary.

Scheduling EOS is complicated by a number of im-
portant constraints. Potin [13] lists some of these
constraints as:

1. Power and thermal availability.

2. Limited imaging segments per orbit. In a given
orbit, a satellite will pass over a target only
once. For the sun-synchronous orbits used by
most Earth observing satellites, each orbit takes
about 90 minutes.

3. Revisit limitations. A target must be within
sight of the satellite; and EOS satellites travel
in fixed orbits. These orbits pass over any par-
ticular place on Earth at limited times so there
are only a few imaging windows (and sometimes
none) for a given target.

4. Time required to take each image. Most Earth
observing satellites take a one dimensional image
and use the spacecraft’s orbital motion to sweep
out the area to be imaged. Thus, the larger the
image the more time is required to take it.
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5. Limited on-board data storage. Images are
stored in a solid state recorder (SSR) until they
can be sent to the ground.

6. Ground station and communication satellite
availability, especially playback opportunities.
The data in the SSR can be sent to the ground ei-
ther when the satellite passes over a ground sta-
tion or via geosynchronous communication satel-
lites. Ground station windows are as limited
as any other target, and suitable communica-
tion satellites (mostly TDRSS) are only available
when not servicing higher priority flights (e.g.,
shuttle or station).

7. Transition time between look angles (slewing).
Some instruments are mounted on motors that
can point either side-to-side (cross-track) or for-
ward and back (along-track). In addition, some
satellites can rotate to point their instruments in
any direction. These are called agile satellites.

8. Cloud cover. Some sensors cannot see through
clouds. Not only do clouds cover much of the
Earth at any given time, but some locations are
nearly always cloudy.

9. Stereo pair acquisition.

10. Coordination of multiple satellites. In a sensor
web an imaging request can be satisfied by any
of several satellites. Also, in many cases there is
a need to image a particular area by more than
one sensor, often with time constraints.

For further details of the EOS scheduling problem
see [2] and [15].

We hypothesize that evolutionary algorithms can
effectively schedule Earth imaging satellites, both
single satellites and cooperating fleets. The con-
straints on such fleets are complex and the bottle-
necks are not always well understood, a condition
where evolutionary algorithms are often more effec-
tive than traditional techniques. Traditional tech-
niques often require a detailed understanding of the
bottlenecks, whereas evolutionary programming re-
quires only that one can represent solutions, mod-
ify solutions, and evaluate solution fitness, not ac-
tually understand how to reason about the problem

or which direction to modify solutions (no gradient
information is required, although it can be used).

To test this hypothesis we have developed a (hope-
fully) representative set of problems and software to
compare solutions generated by various evolutionary
and other optimization techniques. We also present
data comparing scheduling a two satellite constella-
tion as a (small) sensor web vs. as separate systems
to motivate integrated fleet scheduling.

Evolutionary and other algorithms have been ap-
plied to the EOS scheduling problem by several au-
thors, including:

1. Sherwood et al. [15] used ASPEN, a general
purpose scheduling system, to automate NASA’s
EO-1 satellite.

2. Potter and Gasch [14] described a clever algo-
rithm for scheduling the Landsat 7 satellite fea-
turing greedy search forward in time with fixup
to free resources for high priority images.

3. Rao, et al. [12] reported scheduling ground sta-
tion use, but not imaging activity, for a fleet of
seven Indian Earth imaging satellites .

4. Lamaitre et al. [8] compared methods for shar-
ing a satellite among multiple users. They found
that fixing the fraction of the satellite devoted
to each user was poor in terms of global satis-
faction; whereas satisfying global criteria leads
to poor performance in terms of guaranteeing a
particular fraction of imaging time to each user.

5. Lamaitre’s group also compared constraint pro-
gramming and local search for scheduling an ag-
ile satellite [9]. They found that constraint pro-
gramming is more flexible but local search per-
forms better.

6. Wolfe and Sorensen [17] compared three algo-
rithms, including the genetic algorithm, on the
window-constrained packing problem, which is
related to EOS scheduling. They found that the
genetic algorithm produced the best schedules,
albeit at a significant CPU cost.



7. Frank et al. [2] described plans to apply heuris-
tic based stochastic search using the Europa [3]
constraint system to EOS scheduling.

The next section describes the model problems.
This is followed by a description of the optimization
technique comparison software, the results of initial
experiments, and future plans. Further details on the
model problems, and our JavaGenes scheduling soft-
ware may be found in [4].

3 Model Problems

Since our project is designed to consider the schedul-
ing of a parameterizable generic system, not any par-
ticular spacecraft, sensor, or sensor web, it is impor-
tant to develop a set of model problems that exhibit
important aspects of EOS scheduling now and in the
future. We have attempted to base our model’s sen-
sors and satellites on hardware currently in orbit. We
have identified and begun to scope seven problems:

1. A single satellite with a single cross-track slew-
able instrument.

2. A two satellite constellation with satellites iden-
tical to that in problem one.

3. A single agile satellite with one instrument.

4. A single satellite with multiple instruments (one
of which is slewable).

5. A sensor web of single- and multiple-instrument
satellites communicating directly with the
ground.

6. A sensor web of single-instrument agile satellites
communicating with an in-orbit communications
system based on high-data-rate lasers.

7. A sensor web with a very large number of satel-
lites including satellites with multiple instru-
ments. This problem presumes much cheaper
and more reliable launch.

Problems 1 and 2 have been implemented. The Re-
sults section compares a number of search techniques
against problem 2 with the following characteristics:

1. One week of satellite operations.

2. Two satellites in sun synchronous orbit one
minute apart.

3. One identical instrument per satellite.

4. Slewing up to 48 degrees cross-track in either
direction at a rate of 50 seconds/degree for each
instrument.

5. 4200 imaging targets (takeImages) randomly dis-
tributed around the globe; 123 of these never
come into view of either satellite.

6. 24 seconds data recording per takeImage.

7. A priority between 1 and 5 (higher priority is
more important) for each takeImage.

4 EOS Scheduling by Evo-
lutionary Algorithms and
Other Optimization Tech-
niques

There are a number of optimization (evolutionary
and otherwise) algorithms in the literature. We com-
pare a genetic algorithm (GA), simulated annealing
(SA), and stochastic hill climbing (HC). In addition,
we compare random and squeaky wheel (SW) trans-
mission operators. Random transmission operators
change a schedule at random (consistent with the
constraints). Squeaky wheel operators examine a
schedule and try to make changes that are likely to
improve the schedule.

We represent a schedule as a permutation (the
genotype) of the image requests (takeImages). A sim-
ple, deterministic greedy scheduler assigns resources
to the requested takeImages in the order indicated
by the permutation. This produces a timeline (the
phenotype) with all of the scheduled takeImages,
the time they are executed, and the resources used.
The greedy scheduler assigns times and resources to
takeImages using earliest-first scheduling heuristics
while maintaining consistency with sensor availabil-
ity, onboard memory (SSR) and slewing constraints.



If a takeImage cannot be scheduled without violating
constraints created by scheduling takeImages from
earlier in the permutation, the takeImage is left un-
scheduled.

Simple earliest-first scheduling starting at epoch
(time = 0) had some problems, and we discovered
that the algorithm works better if ’earliest-first’ starts
with a particular imaging window (period where the
satellite is within sight of a target; most takeIm-
ages have several windows in our week-long prob-
lem) rather than at epoch. If the takeImage cannot
be scheduled before the end of time, the algorithm
starts at epoch and continues until the takeImage is
scheduled or the initial imaging window is reached.
The window within which a takeImage is scheduled
is stored in memory and used by children when they
generate schedules. The extra scheduling flexibility
may explain why this approach works better than
earliest-first starting at epoch.

Constraints are enforced by representing each re-
source as a timeline. Scheduling a takeImage causes
each relevant resource timelines to take on appropri-
ate values (i.e., in use for a sensor, slew motor setting,
amount of SSR memory available) at different times.
A takeImage is inserted at the first time examined
and available in all the required resource timelines.

Search is guided by a fitness function that deter-
mines the ’goodness’ of a schedule generated from a
permutation. The fitness function must provide a fit-
ness for any possible schedule, no matter how bad
it is, and nearly always distinguish between any two
schedules, no matter how close they are. Our fitness
function is multi-objective. The objectives include:

1. Minimize the sum of the priority of the images
not scheduled (takeImages). Each takeImage has
a priority between 1 and 5, where the larger num-
bers indicate higher priority.

2. Minimize total time spent slewing (slew motors
wear out).

3. Minimize the sum of the slew angles for the im-
ages taken (small slews improve image resolu-
tion).

These objectives are manipulated so that lower values
are better fitness; the objectives are then combined

into a weighted sum:

F = wp

∑
Iu

Ip + wsSt + wa

∑
Is

Ia (1)

where F is the fitness, Iu is the set of unscheduled
takeImages, Is is the set of scheduled takeImages, Ip

is the priority of a takeImage, St is the total time
spent slewing, Ia is the slewing angle the schedule
requires for a takeImage, and wp, ws, and wa are
weights (positive numbers).

We are now ready to describe the three search al-
gorithms:

1. Stochastic hill climbing (HC) starts with a sin-
gle randomly generated permutation. This per-
mutation (the parent) is mutated to produce a
new permutation (a child) which, if it produces
a better (more fit) schedule than the parent, re-
places the parent. Two cases are investigated:
five restarts per run and no restarts. With no
restarts, each search generates 100,000 children
starting with a random permutation. In the
restart case, each search consists of five sub-
searches of 20,000 children each; the best indi-
vidual from all five searches is reported.

2. Simulated annealing (SA) is similar to HC ex-
cept less fit children can replace the parent with
probability p = e

−4F
T where 4F is how much

less fit the child is. The temperature T starts at
100 and is multiplied by 0.92 every 1000 children
(100,000 children are generated per run).

3. The genetic algorithm (GA) seeks to mimic the
natural evolution of populations of organisms
and there are many variants. Our GA employs
the following algorithm:

(a) Generate a population of 100 random per-
mutations

(b) Calculate the fitness of each permutation

(c) Repeat

i. Randomly select parent permutations
with a bias towards better fitness

ii. Produce child permutations from the
parents with:



A. crossover that combines parts of
two parents into a child, or

B. mutation that modifies a single
parent

iii. Calculate the fitness of the child
iv. Randomly replace individuals of less

fitness in the population with the chil-
dren

(d) Until 100,000 children have been produced

The search for a good schedule starts with one or
more random permutation (the initial parents) and
uses mutation and crossover operators to create chil-
dren from parents. This paper compares four muta-
tion operators and one crossover operator. The mu-
tation operators are:

1. Random swap. Two permutation locations
are chosen at random and the takeImages are
swapped. Swaps are executed 1-9 times per mu-
tation. A single random swap is called order-
based mutation [16].

2. Squeaky swap. This is the same as random swap
except that the takeImages to swap are chosen
more carefully. Specifically, a tournament of size
10, 20, 50, 100, 200, or 500 selects both takeIm-
ages. One takeImage that ’should’ be moved for-
ward in the permutation is chosen. The winning
takeImage is (in this order):

(a) unscheduled rather than scheduled

(b) higher priority

(c) later in the permutation

The other takeImage is chosen assuming it
should be moved back in the permutation. This
tournament winner has the opposite characteris-
tics. Although the takeImages to swap are cho-
sen because one ’should’ move forward in the
permutation and the other ’should’ move back,
this is not enforced. Experiment determined
that the desired direction of the swap did not
actually occur nearly as often as expected, occa-
sionally less than half the time!

3. Placed squeaky swap. Here the direction is en-
forced. A separate tournament (of size 10, 20,
50, 100, or 200) is conducted for each takeIm-
age. The takeImage to move forward is forced
to be in the last half of the permutation. The
takeImage to move back is then forced to be at
least half way towards the front.

4. Cut and rearrange. The permutation is cut into
1-5 pieces and these are put back together in
a random order. This is similar to the cut-set
based operators used in the traveling salesman
problem community.

The crossover operator is only used in the genetic
algorithm. The operator is Syswerda and Palmucci’s
position-based crossover [16]. Roughly half of the
permutation positions are chosen at random (50%
probability per position). These positions are copied
from the father to the child. The remaining takeIm-
age numbers fill in the other positions in the order
they appear in the mother.

In many cases several different transmission opera-
tors and/or the same kind of operator with different
sized tournaments, number of swaps, or cuts were
used. In these cases, each child was produced by a
randomly chosen transmission operator.

5 Results

A number of search technique/transmission opera-
tor pairs were compared. Each combination was re-
peated 94 times to get statistically significant results.
The resulting distributions were spot checked for a
gaussian distribution to insure the Student’s T-test
is valid. In each trial, evolution produced 100,000
children.

A quantitative comparison of search techniques
and transmission operators (various forms of muta-
tion and crossover) can be found in table I. The tech-
niques at the top of the table produce the best sched-
ules, the techniques at the bottom the worst. A few
observations:

1. Simulated annealing is clearly the best search
technique. It is not surprising the SA beats



search algorithm transmission operators fitness (equation 1) priority (wp

∑
Iu

Ip) takeImage (Iu)
SA 1-9 swap 2171 1873 1199
SA 1 swap 2354 2077 1295

HC 5 restarts 1-9 swaps 2539 2287 1415
HC 5 restarts 1 swap 2564 2313 1429
HC 0 restarts 1 swap 2575 2327 1436

SA 1 squeaky swap 2772 2527 1615
SA 1 placed squeaky swap 2814 2559 1579
HC 1 squeaky swap 2868 2625 1623

GA population = 100 crossover and 1 swap 3007 2759 1558
GA population = 100 1-5 cut and rearranges 3008 2754 1526

SA 1-5 cut and rearranges 3012 2737 1439

Table 1: Comparison of search techniques. Search-technique/transmission operator pairs ordered by mean
fitness. Techniques are ordered by fitness (low values are better schedules for all measures). Priority is the
sum of the priority of all unscheduled tasks. TakeImage is the number of unscheduled takeImages. All data
are the mean of 94 searches. Values are rounded down to the next lowest whole number. All differences are
statistically significant (as measured by Student’s T-Test) except for fitness: HC with 0 and 5 restarts with
1 swap, and the worst three; priority: only the worst three; and several of the takeImage comparisons.

HC, since HC is clearly vulnerable to local min-
ima. To understand why SA and HC beat GA,
consider the building blocks in the permutation.
These may be thought of as sets of takeImages
in a particular order that leads to good partial
schedules. Moving an arbitrary takeImage be-
fore a building block can easily disrupt it by
making some of the takeImages unschedulable;
or worse, causing one of the takeImages in the
building block to be scheduled in another win-
dow further disrupting the building block. Since
good building blocks are thought to be essential
to GA performance [5], GA does poorly.

2. Random swap mutations beat the smarter
’squeaky’ mutation where the takeImages to
swap are chosen more carefully (a counter intu-
itive result). This may be, in part, because the
squeaky operators limit the possible moves an
algorithm may take. This can create additional
local minima that the search then falls into.

3. Multiple swaps are better than a single swap,
possibly because some moves are impossible with
a single swap.

4. Ordering techniques by priority or takeImage
rather than fitness doesn’t make any difference
for the best techniques, and much of the differ-
ence that does occur is not statistically signifi-
cant.

5. The cut and rearrange operators do very poorly.
Cut and rearrange works well for the traveling
salesman problem because moving contiguous
chunks of the permutation relative to each other
does not change the partial fitness of the chunk.
In permutation driven scheduling, however, re-
versing the order of two contiguous chunks can
cause very large changes in the schedule.

These observations should be considered prelimi-
nary rather than definitive. First of all, this is a
single problem and results may vary when a larger
range of the model problems are addressed. Sec-
ond, the squeaky algorithms can stand improvement
and may someday outperform the random operators.
Nonetheless, if these results stand up, there are some
important implications.

1. Simulated annealing requires less memory than



the genetic algorithm and does not require
crossover operators or a population, making it
better performing, more efficient, and easier to
implement.

2. Random swaps out perform the ’smarter’
squeaky swaps, making random swaps better
performing, faster, and easier to implement.

3. One should allow multiple random swaps, in
spite of the minor increase in code complexity.

Figure 1 shows the evolutionary history of the best
individuals for the best schedules evolved by simu-
lated annealing (SA), hill climbing (HC), and the ge-
netic algorithm (GA) using the the one random swap
mutation operator. Notice that although simulated
annealing wins in the end, it trails GA until about
generation 50 and trails HC until about generation
70. SA seems to be doing a better job of finding and
then exploiting a deep minimum. Notice also that all
three techniques are still improving the schedule at
the end of the run, suggesting that additional evolu-
tion (more than 100,000 children) would be rewarded
with better schedules.

One unexpected property of the schedules gener-
ated was the slewing. Specifically, in order to min-
imize total slewing time (St from equation 1) the
schedules tended to place takeImages such that the
instrument is slewed to extremes (see figure 2); which
will generate relatively low resolution images. This
could perhaps be improved if the fitness function gave
more weight to minimizing the sum of the slews or
if the instruments slewed faster (which would also be
more realistic).

A second experiment compared GA with one swap
operator on two problems: in the first, each satel-
lite was randomly assigned half of 4,200 takeImages;
in the second, either satellite was allowed to execute
any takeImage (see table 2). As might be expected,
the case where any satellite could take any image
produced superior schedules. Specifically, the shared
case was able to take about 28% more images, the pri-
ority measure improved 40%, and fitness 35%. This
suggests that integrated fleet scheduling is much bet-
ter than separately scheduling each satellite or sensor.

6 Future Work

Future work will be focused on expanding table I to
include more problems and techniques. Specifically,
we intend to add:

1. Additional model problems.

2. A duty cycle constraint. This constraint requires
that an instrument is not used for more than u
seconds in any t second time period.

3. Improved squeaky operators; in particular, shift-
ing a high priority, unscheduled takeImage for-
ward, rather than swapping with a scheduled,
low priority takeImage.

4. Swap operators where the number of swaps is a
probabilistic function of the number of children
that have been produced. As evolution proceeds,
the number of swaps is reduced. This encour-
ages large steps in the beginning of evolution and
smaller refinement steps near the end.

5. Transmission operator evolution; where trans-
mission operators that have done well early in
evolution are more likely to be used.

6. Additional forms of local search.

7. HBSS (Heuristic Biased Stochastic Search) with
contention based heuristics similar to those pro-
posed in [2].

8. A multi-objective co-evolution genetic algorithm
[10]. The present fitness function depends on
somewhat arbitrary weights to turn multiple ob-
jectives into a single objective for fitness com-
parisons. A true multi-objective approach might
generate better schedules.

9. Changing the fitness function to normalize the
sum of the amount of slew for each scheduled
takeImage by the number of scheduled takeIm-
ages. At present, this objective increases as
more takeImages are scheduled, penalizing what
we want to do!
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Figure 1: A comparison of the evolutionary history of simulated annealing, hill climbing, and the genetic
algorithm. Lower fitness values indicate better schedules.

problem fitness (equation 1) priority (wp

∑
Iu

Ip) takeImage (Iu)
shared 2171 1873 1199

separate 3346 3096 1657

Table 2: Comparison of shared target vs separate targets for a two satellite constellation using GA with only
single swap mutation and crossover. All comparisons are statistically significant. The shared case is 25-40%
better depending on the measure used for comparison.
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7 Summary

Earth imaging satellite constellation scheduling is a
complex task with many variables and interacting
constraints. We hypothesize that evolutionary pro-
gramming can solve the EOS scheduling problem ef-
fectively and have begun to test various evolutionary
search techniques and transmission operators. Sim-
ulated annealing with 1-9 random swaps performed
the best of those techniques we have tested on a
single two-satellite problem. We have also shown
that scheduling a small fleet as a combined resource
outperforms separate scheduling for each satellite by
about 25-40%.
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